Return to search

Modèles de Markov cachés à haute précision dynamique

La reconnaissance vocale est une technologie sujette à amélioration. Malgré 40 ans de travaux, de nombreuses applications restent néanmoins hors de portée en raison d'une trop faible efficacité. De façon à pallier à ce problème, l'auteur propose une amélioration au cadre conceptuel classique. Plus précisément, une nouvelle méthode d'entraînement des modèles markoviens cachés est exposée de manière à augmenter la précision dynamique des classificateurs. Le présent document décrit en détail le résultat de trois ans de recherche et les contributions scientifiques qui en sont le produit. L'aboutissement final de cet effort est la production d'un article de journal proposant une nouvelle tentative d'approche à la communauté scientifique internationale.

Dans cet article, les auteurs proposent que des topologies finement adaptées de modèles markoviens cachés (HMMs) soient essentielles à une modélisation temporelle de haute précision. Un cadre conceptuel pour l'apprentissage efficace de topologies par élagage de modèles génériques complexes est donc soumis. Des modèles HMM à topologie gauche-à-droite sont d'abord entraînés de façon classique. Des modèles complexes à topologie générique sont ensuite obtenus par écrasement des modèles gauche-à-droite. Finalement, un enchaînement successif d'élagages et d'entraînements Baum-Welch est fait de manière à augmenter la précision temporelle des modèles.

Identiferoai:union.ndltd.org:usherbrooke.ca/oai:savoirs.usherbrooke.ca:11143/8996
Date January 2016
CreatorsGagnon, Sébastien
ContributorsRouat, Jean
PublisherUniversité de Sherbrooke
Source SetsUniversité de Sherbrooke
LanguageFrench, English
Detected LanguageFrench
TypeMémoire
Rights© Sébastien Gagnon

Page generated in 0.0013 seconds