Reevaluation of organosulfur heats of formation resulted in the conclusion that the sulfur-sulfur bond of aliphatic disulfides is nearly 15 Kcal/mole stronger than the disulfide carbon-sulfur bond energy. Semi-empirical calculations using AM1, MNDO and MINDO/3 from the AMPAC program package confirmed these results and clarified their relative impact on organosulfide and disulfide properties. / Existing organoselenium bond energy data were also reevaluated and erroneous assumptions discovered. New bond energy estimates were made via a new procedure. It was concluded that the selenium-selenium bond is also stronger than the selenium-carbon of aliphatic diselenides. / The above results led to the conclusion that loss of molecular dichalcogen from molecules such as disulfides or diselenides is favored over the stepwise loss of a single chalcogen by about 40 Kcal/mol. Loss of molecular diselenium from dibenzyl diselenide is reported. The average carbon-selenium bond energy of the latter is calculated to be only 27 Kcal/mol. / The preparation of 2-thiatriselenides (RSeSSeR) and 2,3-dithiatetraselenides (RSeSSSeR) has been achieved from selenosilanes. The products were characterized by $ sp{77}$Se NMR and the trends of chemical shifts were analyzed. / The preparation of the first selenium transfer reagents, including the first unsymmetrical chalcogen transfer reagent, is reported. Their use to effect the synthesis of 2-selenatrisulfides (RSSeSR) is also reported. Low temperature $ sp{77}$Se NMR was used to elucidate the reaction mechanism and characterize several intermediates such as selenuranes, selenonium ions and azole selenides. In addition, 2,3-diselenatetrasulfides (RSSeSeSR) were characterized by $ sp{77}$Se NMR.
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMM.75753 |
Date | January 1988 |
Creators | Ryan, M. Dominic (Michael Dominic) |
Publisher | McGill University |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | English |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Format | application/pdf |
Coverage | Doctor of Philosophy (Department of Chemistry.) |
Rights | All items in eScholarship@McGill are protected by copyright with all rights reserved unless otherwise indicated. |
Relation | alephsysno: 000717721, proquestno: AAINL46112, Theses scanned by UMI/ProQuest. |
Page generated in 0.0021 seconds