The key to success in separation of liquid mixtures is the efficient creation and utilization of vapour-liquid contact area. By packing the column with gas-liquid contact devices such as structured packing, the vapour-liquid contact area can be increased. However, the efficiency of these packed columns depends strongly on the local flow behaviour of the liquid and vapour phase inside the packing.
The aim of this work was to develop three-dimensional CFD models to study the hydrodynamic behaviour on the corrugated sheets of packing. Different approaches are possible to simplify the problem and to extend it for more complex flow scenarios. In this work, three-dimensional CFD simulations were performed to study the complete fluid-dynamic behaviour. This was performed in two steps.
As a first step, the developed model was validated with experimental studies using a simplified geometry i.e., an inclined plate. The three-dimensional Volume-of-Fluid (VOF) model was utilized to study the flow behaviour of the gas-liquid countercurrent flow. The influence of the liquid surface tension was taken into consideration using the Continuum Surface Force (CSF) model. The wetting characteristics of liquids with different viscosity (1 and 5 mPas) and contact angle (70° and 7°) were studied for different flow rates. Three different mixtures (water, water-glycerol (45 wt. %) and silicon-oil (DC5)) were considered. Initially, the rivulet width of experiments and simulations were compared and an error of 5 % maximum was determined. The results were also in good agreement with earlier studies. The percentage of wetting due to changes in flow rate, viscosity and contact angle was compared and discussed. For all tested systems, excellent agreement between the experiments and simulation studies was found. In addition, profiles of the velocity in the film at film flow conditions over a smooth inclined plate obtained from simulations were compared with experimental profiles obtained using a μPIV technique. A detailed sensitivity study was also performed in order to understand the changes in the velocity profiles due to small change in liquid flow rate, temperature and inclination angle.
As a next step, the developed model was extended to geometries resembling real corrugated sheets of packing used in industrial applications. In earlier numerical studies of structured packing, geometries were simplified to enable easy meshing and faster computation. In this work, the geometries of corrugated sheets of packing were developed without any simplification and the flow behaviour was studied using the model validated in the first step. The flow behaviour on sheets with different geometrical modifications such as smooth and triangular crimp surfaces as well as perforations on the sheets were numerically studied and quantitatively compared with experimental studies for the three different fluid test systems. The agreement between the simulations and experiments was within an acceptable range for all system. The difference in the interfacial area between the corrugated sheets of a packing with and without perforation was analyzed and the prediction ability of different empirical correlations for the interfacial area available in literature was also compared and discussed.
Furthermore, the numerical study was extended to understand the influence of the second corrugated sheet. Studying the flow behaviour between two sheets experimentally is very challenging, especially inside opaque packing. The model proved to be a very suitable tool to study the hold-up of the liquid between two sheets, the change in wetting behaviour due to small change in liquid inlet position. The results are also in good agreement with the earlier experimental studies, where researchers measured the liquid hold-up mainly in the region where two corrugated sheets touch each other.
The three-dimensional CFD model was validated to study the flow behaviour on corrugated sheets of packing. The results from the simulations agree very well with findings from the experimental studies in terms of wetting and hold-up.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:22981 |
Date | 16 May 2014 |
Creators | Subramanian, Kumar |
Contributors | Repke, Jens-Uwe, Wozny, Günter, Technische Universität Bergakademie Freiberg |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | doc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0019 seconds