Proteins adopt three-dimensional structures which serve as a starting point to understand protein function and their evolutionary ancestry. It is unclear how proteins fold in vivo and how this process can be recreated in silico in order to predict protein structure from sequence. Contact maps are a possibility to describe whether two residues are in spatial proximity and structures can be derived from this simplified representation. Coevolution or supervised machine learning techniques can compute contact maps from sequence: however, these approaches only predict sparse subsets of the actual contact map. It is shown that the composition of these subsets substantially influences the achievable reconstruction quality because most information in a contact map is redundant. No strategy was proposed which identifies unique contacts for which no redundant backup exists.
The StructureDistiller algorithm quantifies the structural relevance of individual contacts and identifies crucial contacts in protein structures. It is demonstrated that using this information the reconstruction performance on a sparse subset of a contact map is increased by 0.4 A, which constitutes a substantial performance gain. The set of the most relevant contacts in a map is also more resilient to false positively predicted contacts: up to 6% of false positives are compensated before reconstruction quality matches a naive selection of contacts without any false positive contacts. This information is invaluable for the training to new structure prediction methods and provides insights into how robustness and information content of contact maps can be improved.
In literature, the relevance of two types of residues for in vivo folding has been described. Early folding residues initiate the folding process, whereas highly stable residues prevent spontaneous unfolding events. The structural relevance score proposed by this thesis is employed to characterize both types of residues. Early folding residues form pivotal secondary structure elements, but their structural relevance is average. In contrast, highly stable residues exhibit significantly increased structural relevance. This implies that residues crucial for the folding process are not relevant for structural integrity and vice versa. The position of early folding residues is preserved over the course of evolution as demonstrated for two ancient regions shared by all aminoacyl-tRNA synthetases. One arrangement of folding initiation sites resembles an ancient and widely distributed structural packing motif and captures how reverberations of the earliest periods of life can still be observed in contemporary protein structures.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:33163 |
Date | 14 February 2019 |
Creators | Bittrich, Sebastian |
Contributors | Stadler, Peter, Labudde, Dirk, Schroeder, Michael, Technische Universität Dresden |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | doc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0019 seconds