This thesis concentrates on discovering the best consolidant or consolidants for stabilizing a Columbian mammoth’s sub-fossilized mandibles, a distal femur, an ulna, a radius, and a tooth. It was recovered from a wet, sandy gravel pit owned by the Vernor Family located in Clute, Texas. Based on thermoluminescence dating, the mammoth dates to around 66,000 years ago. The bones are fragile and unstable. They retain a minute amount of organic material (collagen) and hydroxyapatite, but not enough to retain any structural support. Experiments and analyses were conducted on various bone samples to compare each of the following consolidants’ properties. The consolidants examined were silicone oil, polyvinyl acetate (PVA) with viscosity of 25, Acryloid B-72, Butvar 98, Starbond EM-02, methyltrimethoxysilane (MTMS), Paleo-bond, and Rhoplex (Primal) WS24. Stability, strength, and appearance were evaluated by measurable observations. The Scanning Electron Microscope (SEM) and the Environmental Scanning Electron Microscope (ESEM) at the Microscopy and Imaging Center at Texas A&M University were used to map penetration of these consolidants. SEM was utilized for both imaging and energy-dispersive x-ray spectroscopy (EDS) to examine the presence and absence of certain elements. ESEM was used to view consolidants at the microscopic level to further examine the bonding between the consolidant and the bone’s cellular structure. By examining and testing all the consolidants, methyltrimethoxysilane (MTMS) was chosen to stabilize the ulna, radius, left and right mandibles, distal femur, and tooth. This research opened new avenues to different methods in preserving sub-fossilized bone and broadens our understanding of bone conservation.
Identifer | oai:union.ndltd.org:TEXASAandM/oai:repository.tamu.edu:1969.1/ETD-TAMU-1233 |
Date | 15 May 2009 |
Creators | Daniel, Shanna LaRea |
Contributors | Smith, C. Wayne, DeRuiter, Darryl J, Waters, Micheal R |
Source Sets | Texas A and M University |
Language | en_US |
Detected Language | English |
Type | thesis, text |
Format | electronic, application/pdf, born digital |
Page generated in 0.0017 seconds