Thesis (Ocean E.)--Joint program in Oceanography/Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Dept. of Ocean Engineering and Woods Hole Oceanographic Institution), 1999. / Includes bibliographical references (p. 127-128). / Acoustic coded signaling offers potentially significant improvements over traditional "toneburst" methods in many underwater applications where error due to noise and multipath interference is a problem. In this thesis, the use of these spread spectrum techniques is analyzed for navigation of the REMUS autonomous underwater vehicle. The accuracy of the current system using Turyn and Barker sequences, as well as toneburst, is quantified, and the sources of the remaining error are examined. / by Benjamin Kerbin Evans. / Ocean E.
Identifer | oai:union.ndltd.org:MIT/oai:dspace.mit.edu:1721.1/29044 |
Date | January 1999 |
Creators | Evans, Benjamin Kerbin |
Contributors | Henrik Schmidt and Thomas Austin., Massachusetts Institute of Technology. Dept. of Ocean Engineering., Joint Program in Oceanography/Applied Ocean Science and Engineering, Woods Hole Oceanographic Institution, Massachusetts Institute of Technology. Department of Ocean Engineering |
Publisher | Massachusetts Institute of Technology |
Source Sets | M.I.T. Theses and Dissertation |
Language | English |
Detected Language | English |
Type | Thesis |
Format | 128 p., 10577793 bytes, 10577548 bytes, application/pdf, application/pdf, application/pdf |
Rights | M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission., http://dspace.mit.edu/handle/1721.1/7582 |
Page generated in 0.0083 seconds