Return to search

Incorporation of the articulated-body equations into a model-based sliding-mode controller for the reduction of dynamic coupling effect in underwater-manipulator systems

A control scheme is presented for reducing dynamic coupling between an underwater robotic vehicle (URV) and a manipulator. During task execution the torques commanded at the manipulator joints lead to reactions at the junction point of the manipulator and vehicle. These reactions disturb the vehicle position and orientation and are the source of the vehicle-manipulator coupling. In underwater robotic vehicle-manipulator (URVM) applications, the URV serves as a base while the manipulator performs a required task. Therefore, it is necessary to hold the URV as stationary as possible. In the current work, URV thrusters are used to compensate for the dynamic coupling forces. Slotines sliding mode control approach is used to reduce the dynamic coupling present in URVM systems. The articulated body (AB) algorithm is used both for the time-domain simulation of the system and for the dynamic equations within the model-based sliding-mode controller. Finally, the results of time-domain numerical simulation of the proposed control scheme on a URVM system are presented.

Identiferoai:union.ndltd.org:uvic.ca/oai:dspace.library.uvic.ca:1828/1988
Date16 December 2009
CreatorsSoylu, Serdar
ContributorsBuckham, Bradley Jason, Podhorodeski, Ronald Peter
Source SetsUniversity of Victoria
LanguageEnglish, English
Detected LanguageEnglish
TypeThesis
RightsAvailable to the World Wide Web

Page generated in 0.002 seconds