Return to search

Evaluation of the Genetic Differences Between Two Subtypes of Campylobacter fetus (Fetus and Venerealis) in Canada

The pathogen Campylobacter fetus (CF) is classified into two subspecies, Campylobacter fetus subspecies fetus (CFF) and Campylobacter fetus subspecies venerealis (CFV). Even though CFF and CFV are genetically closely related, they exhibit differences in their host adaptation; CFF inhabits the gastrointestinal tract of both humans and several animal species, while classical CFV is specific to the bovine genital tract and is of particular concern with respect to international bovine trade regulation. Traditionally, differentiation between the two subspecies has been achieved using a limited number of biochemical tests but more rapid and definitive genetic methods of discrimination are desired. A recent study suggested that the presence of a genomic island only in CFV could discriminate between the two sub- species but this hypothesis could not be confirmed on a collection of isolates originating in Canada.
To identify alternative gene targets that would support accurate subspecies discrimination, this study has applied several approaches including suppression subtractive hybridization and whole genome sequencing supplemented with optical mapping. A subtractive hybridization screen, using a well-characterized CFV isolate recovered during routine screening of bulls in an Artificial Insemination center in western Canada and that lacked much of the genomic island and a typical Canadian CFF isolate, yielded 50 clones; characterization of these clones by hybridization screening against selected CF isolates and by nucleotide sequence BLAST analysis identified three potentially CFV-specific clones that contained inserts originating from a second genomic island. Further screening using a larger CF sample set found that only Clone #35 was truly CFV-specific. Optical maps (NcoI digest) of the Canadian CFF and CFV isolates used for the subtractive hybridization showed that certain regions of these genomes were quite distinct from those of two reference strains. Whole genome sequencing of these two isolates identified two target genes (PICFV5_ORF548 and CFF_Feature #3) that appear to be selectively retained in the two subspecies. Screening of a collection of CF isolates by PCRs targeting these three loci (SSH_Clone #35, PICFV5_ORF548 and CFF_Feature #3) supported their use for subspecies discrimination. This work demonstrates the complex genomic diversity associated with these CF subtypes and the challenge posed by their discrimination using limited genetic loci.

Identiferoai:union.ndltd.org:uottawa.ca/oai:ruor.uottawa.ca:10393/24402
Date January 2013
CreatorsMukhtar, Lenah
ContributorsNadin-Davis, Susan
PublisherUniversité d'Ottawa / University of Ottawa
Source SetsUniversité d’Ottawa
LanguageEnglish
Detected LanguageEnglish
TypeThesis

Page generated in 0.0034 seconds