In Description Logics (DLs), both tableau-based and automatabased algorithms are frequently used to show decidability and complexity results for basic inference problems such as satisfiability of concepts. Whereas tableau-based algorithms usually yield worst-case optimal algorithms in the case of PSpace-complete logics, it is often very hard to design optimal tableau-based algorithms for ExpTime-complete DLs. In contrast, the automata-based approach is usually well-suited to prove ExpTime upper-bounds, but its direct application will usually also yield an ExpTime-algorithm for a PSpace-complete logic since the (tree) automaton constructed for a given concept is usually exponentially large. In the present paper, we formulate conditions under which an on-the-fly construction of such an exponentially large automaton can be used to obtain a PSpace-algorithm. We illustrate the usefulness of this approach by proving a new PSpace upper-bound for satisfiability of concepts w.r.t. acyclic terminologies in the DL SI, which extends the basic DL ALC with transitive and inverse roles.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:79350 |
Date | 16 June 2022 |
Creators | Baader, Franz, Hladik, Jan, Peñaloza, Rafael |
Publisher | Technische Universität Dresden |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/acceptedVersion, doc-type:report, info:eu-repo/semantics/report, doc-type:Text |
Rights | info:eu-repo/semantics/openAccess |
Relation | urn:nbn:de:bsz:14-qucosa2-785040, qucosa:78504 |
Page generated in 0.0018 seconds