<p>A strategic research area today is development of polymericproducts made from renewable sources. The ways of utilizingrenewable sources studied in this thesis are using 1)prepolymers obtained by steam treatment of wood and 2) monomersobtainable by fermentation of agricultural products.</p><p>Novel hemicellulose-based hydrogels were prepared by usingprepolymers obtained from steam treatment of spruce.Hemicellulose was first modified with well-defined amounts ofmethacrylic functions. Hydrogels were then prepared by radicalpolymerization with 2-hydroxyethyl methacrylate orpoly(ethylene glycol) dimethacrylate to form hydrogels. Theradical polymerization reaction was carried out in water usinga redox initiator system. The hydrogels were in generalelastic, soft and easily swollen in water. Frequency sweeptests indicated that the hydrogel system displayed prevailingsolid-like behavior. Comparison of the hemicellulose-basedhydrogels with pure poly(2-hydroxyethyl methacrylate)-basedhydrogels showed that it was possible to preparehemicellulose-based hydrogels with properties similar to thoseof pure poly(2-hydroxyethyl methacrylate)-based hydrogels.</p><p>Polyester-based materials were prepared by using themonomers 1,3- propanediol and succinic acid obtainable byfermentation. α,ω-Dihydroxyterminatedoligomeric polyesters produced by the thermal polycondensationof 1,3-propanediol and succinic acid were chain-extended toobtain sufficiently high molecular weight. Depending on thechain-extension technology adopted, poly(ester carbonate)s orpoly(ester urethane)s were obtained. In the case of poly(estercarbonate)s, the chain-extended products ofα,ω-dihydroxyterminated oligomeric copolyesters werealso produced using 1,3-propanediol/1,4-cyclohexanedimethanol/succinic acid mixtures toimprove thermal and mechanical properties. Segmented poly(esterether carbonate)s fromα,ω-dihydroxyterminated oligo(propylenesuccinate)s and poly(ethylene glycol) were also synthesized toincrease the hydrophilicity.</p><p>Molecular weights and polydispersity were analyzed by SECfor all materials. Their structures were also identified by NMRspectroscopy (1H NMR and 13C NMR). All characterizations werein agreement with the proposed structures. Thermal parameterswere characterized by DSC. Tensile testing anddynamic-mechanical tests were performed and in additionpreliminary processing trials were carried out in some cases.The results demonstrate the feasibility of using monomersderived from renewable sources to build up new polymericstructures endowed with a variety of physical and mechanicalproperties.</p>
Identifer | oai:union.ndltd.org:UPSALLA/oai:DiVA.org:kth-3554 |
Date | January 2003 |
Creators | Söderqvist Lindblad, Margaretha |
Publisher | KTH, Fibre and Polymer Technology, Stockholm : Fiber- och polymerteknologi |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Doctoral thesis, comprehensive summary, text |
Page generated in 0.0021 seconds