This thesis deals with analysis of T-wave Alternans (TWA), periodical changes of T wave in ECG signal. Presence of these alternans may predict higher risk of sudden cardiac death. From the several possible ways of TWA classification, the training algorithms of self organizing maps are used in this thesis. Result of the thesis is a program, which in the first step detects QRS complexes in the signal. Then, in the next step, gained reference points are used for T-waves detection. Detected waves are represented by a vector of significant points, which is used as an input for artificial neural network. Final output of the program is a decision about presence of TWA in the signal and its rate.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:217219 |
Date | January 2008 |
Creators | Procházka, Tomáš |
Contributors | Harabiš, Vratislav, Hrubeš, Jan |
Publisher | Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0017 seconds