Return to search

A New Methodology for the Synthesis of Metal Sulfide Particles

In this thesis, a facile methodology for the synthesis of CdS and PbS particles using novel thiobisphthalimide (D1) and dithiobisphthalimide (D2) organic sulfur precursors is proposed. A slightly different approach was followed for the synthesis of CuS particles. The effect on the size and morphology of the particles of a variety of reaction parameters such as the nature of sulfur precursor, the reducing agent concentration, the metal-to-sulfur ratio and the reaction temperature was investigated. The phase and composition identifications of the CdS and PbS particles were done by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) techniques. The transmission electron microscopy (TEM) and scanning electron microscopy (SEM) techniques were employed to determine the morphologies of the particles. The optical properties of the CdS, PbS and CuS particles were examined by UV-Vis and fluorescence spectroscopy techniques. The phase identification results showed that pure cubic CdS and PbS, and hexagonal CuS particles were successfully synthesized with both D1 and D2 precursors. The synthesized CdS and PbS particles possess various morphologies depending on the precursor type and the reaction parameters mentioned previously. Control of the size of the PbS particles in
one dimension in a quantum confinement regime was possible, whereas the CdS particles exhibited faster growth and 3D morphologies. The CuS particles, on the other hand, were produced with high monodispersity in a surfactantless environment.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OGU.10214/6670
Date10 May 2013
CreatorsUn, N. Serhat
ContributorsHoumam, Abdelaziz
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
TypeThesis

Page generated in 0.0019 seconds