Return to search

In-situ Removal of Hydrogen Sulphide from Landfill Gas : Arising from the Interaction between Municipal Solid Waste and Sulphide Mine Environments within Bioreactor Conditions

This project was compiled in co-operation with the Royal Institute of Technology, Stockholm and Veolia Environmental Services (Australia) at the Woodlawn Bioreactor in NSW, Australia. Hydrogen sulphide is an unwanted component of landfill gas, raising occupational health and safety concerns, whilst leading to acid gas corrosion of power generation equipment and increased emissions of SOx, a primary constituent of acidification. Australian governmental requirements to place a periodic cover over the unused proportion of the tipping surface of landfills and bioreactors create an interesting opportunity for the removal of the hydrogen sulphide component of landfill gas. Using waste materials containing a high concentration of metals as waste cover can enhance the precipitation of sulphur in the form of metal sulphides. The reduction of sulphate via sulphate reducing bacteria is prevalent in sites that have a sizeable inflow of sulphate. The Woodlawn Bioreactor is located in an area where the influence of sulphate has a critical influence of bioreactor performance and production of hydrogen sulphide. Through a series of experimental bioreactors it was established that from the use of metalliferous periodic waste covers, the hydrogen sulphide component of landfill gas was maintained at an extremely low level when compared to the levels of hydrogen sulphide produced in waste under the influence of high sulphate loads with no waste cover. / www.ima.kth.se

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-32770
Date January 2007
CreatorsLazarevic, David Andrew
PublisherKTH, Industriell ekologi
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/masterThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTrita-IM, 1402-7615 ; 2007:30

Page generated in 0.0018 seconds