Étant de plus en plus isolés, les bâtiments très performants sont très sensibles aux apports solaires transmis par les vitrages ainsi qu'aux apports internes. Dans ce contexte, l'inertie thermique peut être utile en stockant l'énergie excédentaire et en réduisant les variations de température, améliorant ainsi le confort thermique.Évaluer la performance énergétique, environnementale et le confort thermique des bâtiments nécessite des outils de simulation thermique dynamique (STD) fiables. Historiquement, les modélisateurs ont essayé de trouver un compromis approprié entre précision et efficacité. Des hypothèses simplificatrices ont alors été intégrées dans les outils STD et ont un lien étroit avec l'inertie thermique. La validité de telles hypothèses, notamment la globalisation des échanges convectifs et radiatifs GLO intérieurs, ou la distribution forfaitaire des apports solaires transmis par les vitrages nécessitent particulièrement d'être remises en questions dans le contexte des bâtiments très isolés.Ainsi, un modèle découplant les échanges convectifs et radiatifs GLO ainsi qu'un modèle de suivi de la tache solaire (modèles détaillés) ont été implémentés dans une plateforme de simulation mettant en œuvre l'analyse modale et une discrétisation par volumes finis.Une première comparaison entre les modèles détaillés et simplifiés a été réalisée sur des cas d'études du "BESTEST", intégrant aussi des résultats d'outils STD de référence au niveau international (EnergyPlus, ESP-r, TRNSYS). Un travail similaire a été réalisé sur le cas d'une maison passive instrumentée (plateforme INCAS à Chambéry) en utilisant des techniques d'analyses d'incertitudes et de sensibilité.Les résultats montrent qu'une tendance à la baisse concernant les besoins de chauffage et de refroidissement existe en ce qui concerne les modèles détaillés considérés ici. D'autre part, il semble que ces modèles détaillés ne contribuent pas à diminuer significativement les écarts entre les simulations et les mesures. / Being highly insulated, low energy buildings are very sensitive to variable solar and internal gains. In this context, thermal mass is useful by storing surplus energy and reducing temperature variation, thus improving thermal comfort.Assessing energy, environmental and thermal comfort performances requires reliable building dynamic thermal simulation (DTS) tools. Historically, model developers have tried to find a fair-trade between accuracy and simulation efficiency within a fit-to-purpose philosophy. Simplifying assumptions have therefore been integrated into DTS tools and have a close relation with thermal mass. The validity of such assumptions, for instance constant interior convective and infrared radiative superficial exchange coefficients, or fixed distribution of solar gains transmitted through windows, particularly need to be reassessed in the case of high performance buildings.A first comparison between detailed and simplified models has been performed according to the "BESTEST", integrating also international DTS reference tools (EnergyPlus, ESP-r, TRNSYS). Similar work, but using uncertainty and sensivitivity methods has been carried out using experimental measurements on a passive building (INCAS platform in Chambéry). The results show a trend for the detailed models studied here to estimate lower heating and cooling loads. Furthermore, it seems that these detailed models don't contribute to reduce significantly discrepancies between simulations and measurements.
Identifer | oai:union.ndltd.org:theses.fr/2014ENMP0011 |
Date | 07 February 2014 |
Creators | Munaretto, Fabio |
Contributors | Paris, ENMP, Peuportier, Bruno |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0028 seconds