Return to search

HPC scheduling in a brave new world

Many breakthroughs in scientific and industrial research are supported by simulations and calculations performed on high performance computing (HPC) systems. These systems typically consist of uniform, largely parallel compute resources and high bandwidth concurrent file systems interconnected by low latency synchronous networks. HPC systems are managed by batch schedulers that order the execution of application jobs to maximize utilization while steering turnaround time. In the past, demands for greater capacity were met by building more powerful systems with more compute nodes, greater transistor densities, and higher processor operating frequencies. Unfortunately, the scope for further increases in processor frequency is restricted by the limitations of semiconductor technology. Instead, parallelism within processors and in numbers of compute nodes is increasing, while the capacity of single processing units remains unchanged. In addition, HPC systems’ memory and I/O hierarchies are becoming deeper and more complex to keep up with the systems’ processing power. HPC applications are also changing: the need to analyze large data sets and simulation results is increasing the importance of data processing and data-intensive applications. Moreover, composition of applications through workflows within HPC centers is becoming increasingly important. This thesis addresses the HPC scheduling challenges created by such new systems and applications. It begins with a detailed analysis of the evolution of the workloads of three reference HPC systems at the National Energy Research Supercomputing Center (NERSC), with a focus on job heterogeneity and scheduler performance. This is followed by an analysis and improvement of a fairshare prioritization mechanism for HPC schedulers. The thesis then surveys the current state of the art and expected near-future developments in HPC hardware and applications, and identifies unaddressed scheduling challenges that they will introduce. These challenges include application diversity and issues with workflow scheduling or the scheduling of I/O resources to support applications. Next, a cloud-inspired HPC scheduling model is presented that can accommodate application diversity, takes advantage of malleable applications, and enables short wait times for applications. Finally, to support ongoing scheduling research, an open source scheduling simulation framework is proposed that allows new scheduling algorithms to be implemented and evaluated in a production scheduler using workloads modeled on those of a real system. The thesis concludes with the presentation of a workflow scheduling algorithm to minimize workflows’ turnaround time without over-allocating resources. / <p>Work also supported by the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research (ASCR) and we used resources at the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility, supported by the Officece of Science of the U.S. Department of Energy, both under Contract No. DE-AC02-05CH11231.</p>

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:umu-132983
Date January 2017
CreatorsGonzalo P., Rodrigo
PublisherUmeå universitet, Institutionen för datavetenskap, Umeå : Umeå universitet
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeDoctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationReport / UMINF, 0348-0542 ; 17.05, info:eu-repo/grantAgreement/EC/FP7/732667

Page generated in 0.0068 seconds