Return to search

Superconductivity in molybdenum/tantalum superlattices and yttrium-barium-copper-oxide thin films.

The properties of sputter-deposited multilayered superconductors have been studied, including Mo/Ta metallic superlattices and thin films of YBa₂Cu₃O₇₋ₓ. The former have been prepared with the same integer number of atomic planes of Mo and Ta modulating the layered composition. In contrast to behavior observed in other metal-metal superlattices, Mo/Ta exhibits long range structural coherence and metallic resistivity behavior over the entire range of wavelengths down to the monolayer limit. The structural properties of these superlattices are used to explain an anomalous decrease in the c₄₄ elastic stiffness constant previously observed in Mo/Ta for 20 Å ≤ Λ ≤ 50 Å. Superconductivity measurements indicate "universal" T(c) versus ρ behavior in Mo/Ta, and tunneling results show that these superlattices are weakly-coupled BCS superconductors. The second part of this dissertation examines the properties of superconducting thin films of YBa₂Cu₃O₇₋ₓ prepared by dc triode sputtering from metallic targets of Y and Ba₂Cu₃. Post-depression annealing in O₂ is necessary to form the superconducting oxide. Various substrates were used, including sapphire and MgO, both with and without buffer layers of Ag, and SrTiO₃. The buffer layers are used to decrease the interaction of the substrate with the film. The best results occur with films deposited on MgO with a Ag buffer layer, exhibiting T(c) onsets as high as 90 K and zero resistance by 60 K. I find that the crystalline orientation of films deposited on (100) SrTiO₃ are influenced by the substrate, and re-annealing a sample can sometimes improve its superconducting properties. Overall, reproducibility is the biggest problem with this technique, as Ba metal is highly reactive with the environment.

Identiferoai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/184662
Date January 1989
CreatorsMakous, John Lawrence.
ContributorsFalco, Charles
PublisherThe University of Arizona.
Source SetsUniversity of Arizona
LanguageEnglish
Detected LanguageEnglish
Typetext, Dissertation-Reproduction (electronic)
RightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.

Page generated in 0.002 seconds