Cette thèse aborde le problème de l’apprentissage avec des fonctions de perte nonmodulaires. Pour les problèmes de prédiction, où plusieurs sorties sont prédites simultanément, l’affichage du résultat comme un ensemble commun de prédiction est essentiel afin de mieux incorporer les circonstances du monde réel. Dans la minimisation du risque empirique, nous visons à réduire au minimum une somme empirique sur les pertes encourues sur l’échantillon fini avec une certaine perte fonction qui pénalise sur la prévision compte tenu de la réalité du terrain. Dans cette thèse, nous proposons des méthodes analytiques et algorithmiquement efficaces pour traiter les fonctions de perte non-modulaires. L’exactitude et l’évolutivité sont validées par des résultats empiriques. D’abord, nous avons introduit une méthode pour les fonctions de perte supermodulaires, qui est basé sur la méthode d’orientation alternée des multiplicateurs, qui ne dépend que de deux problémes individuels pour la fonction de perte et pour l’infèrence. Deuxièmement, nous proposons une nouvelle fonction de substitution pour les fonctions de perte submodulaires, la Lovász hinge, qui conduit à une compléxité en O(p log p) avec O(p) oracle pour la fonction de perte pour calculer un gradient ou méthode de coupe. Enfin, nous introduisons un opérateur de fonction de substitution convexe pour des fonctions de perte nonmodulaire, qui fournit pour la première fois une solution facile pour les pertes qui ne sont ni supermodular ni submodular. Cet opérateur est basé sur une décomposition canonique submodulairesupermodulaire. / This thesis addresses the problem of learning with non-modular losses. In a prediction problem where multiple outputs are predicted simultaneously, viewing the outcome as a joint set prediction is essential so as to better incorporate real-world circumstances. In empirical risk minimization, we aim at minimizing an empirical sum over losses incurred on the finite sample with some loss function that penalizes on the prediction given the ground truth. In this thesis, we propose tractable and efficient methods for dealing with non-modular loss functions with correctness and scalability validated by empirical results. First, we present the hardness of incorporating supermodular loss functions into the inference term when they have different graphical structures. We then introduce an alternating direction method of multipliers (ADMM) based decomposition method for loss augmented inference, that only depends on two individual solvers for the loss function term and for the inference term as two independent subproblems. Second, we propose a novel surrogate loss function for submodular losses, the Lovász hinge, which leads to O(p log p) complexity with O(p) oracle accesses to the loss function to compute a subgradient or cutting-plane. Finally, we introduce a novel convex surrogate operator for general non-modular loss functions, which provides for the first time a tractable solution for loss functions that are neither supermodular nor submodular. This surrogate is based on a canonical submodular-supermodular decomposition.
Identifer | oai:union.ndltd.org:theses.fr/2017SACLC012 |
Date | 22 March 2017 |
Creators | Yu, Jiaqian |
Contributors | Université Paris-Saclay (ComUE), Blaschko, Matthew B. |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French, English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0022 seconds