In this thesis we study the Dicke model outside the rotating wave approximation (RWA), by employing phase space techniques and the quantum trajectory theory. We present a review of the basic models of open systems in quantum optics and present an experimental proposition justifying the model to be studied. We use the phase space approach to study, among other subjects, entanglement, squeezing and fluctuations across a quantum phase transition. Three different phase space representations are used and their strengths and weaknesses compared. The quantum trajectory theory is applied to visualise the global quantum fluctuations and to learn how different measurement schemes will affect the creation of entanglement. / The University of Auckland, Department of Physics.
Identifer | oai:union.ndltd.org:ADTP/276170 |
Date | January 2008 |
Creators | de Oliveira, Felipe Dimer |
Publisher | ResearchSpace@Auckland |
Source Sets | Australiasian Digital Theses Program |
Language | English |
Detected Language | English |
Rights | Items in ResearchSpace are protected by copyright, with all rights reserved, unless otherwise indicated., http://researchspace.auckland.ac.nz/docs/uoa-docs/rights.htm, Copyright: The author |
Page generated in 0.0059 seconds