Plasma membrane of T cells is abundant in diverse receptors and other molecules orchestrating immune responses. Numerous studies demonstrate that the localisation of proteins in the cell is non-random and that mislocalisation either in the context of plasma membrane at nanoscale or with respect to the cell interior can lead to the protein malfunction and subsequent aberrant T- cell response. In my first Ph.D. project we focused mainly on the role of the transmembrane domain length and amino acid composition, proximal sequences and the presence or absence of palmitoylation on the localisation of transmembrane adaptor proteins LAT, PAG and NTAL in T cells. We showed that plasma membrane localisation of PAG and NTAL is controlled by the amino acid composition of their TMD and is palmitoylation independent. We propose that NTAL localisation to the plasma membrane is, despite its suboptimal length, facilitated by the electrochemical asymmetry of its TMD. Among transmembrane adaptor proteins, LAT was the most interesting one. Dependency of LAT plasma membrane localisation on palmitoylation in combination with unusual amino acid composition of its TMD led us to investigate it in a separate project. My first author Ph.D. project was thus to elucidate the role of highly conserved helix-breaking amino acids,...
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:452726 |
Date | January 2021 |
Creators | Glatzová, Daniela |
Contributors | Cebecauer, Marek, Brábek, Jan, Rozbeský, Daniel |
Source Sets | Czech ETDs |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/doctoralThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0017 seconds