Return to search

Maximum margin learning under uncertainty

In this thesis we study the problem of learning under uncertainty using the statistical learning paradigm. We rst propose a linear maximum margin classi er that deals with uncertainty in data input. More speci cally, we reformulate the standard Support Vector Machine (SVM) framework such that each training example can be modeled by a multi-dimensional Gaussian distribution described by its mean vector and its covariance matrix { the latter modeling the uncertainty. We address the classi cation problem and de ne a cost function that is the expected value of the classical SVM cost when data samples are drawn from the multi-dimensional Gaussian distributions that form the set of the training examples. Our formulation approximates the classical SVM formulation when the training examples are isotropic Gaussians with variance tending to zero. We arrive at a convex optimization problem, which we solve e - ciently in the primal form using a stochastic gradient descent approach. The resulting classi er, which we name SVM with Gaussian Sample Uncertainty (SVM-GSU), is tested on synthetic data and ve publicly available and popular datasets; namely, the MNIST, WDBC, DEAP, TV News Channel Commercial Detection, and TRECVID MED datasets. Experimental results verify the e ectiveness of the proposed method. Next, we extended the aforementioned linear classi er so as to lead to non-linear decision boundaries, using the RBF kernel. This extension, where we use isotropic input uncertainty and we name Kernel SVM with Isotropic Gaussian Sample Uncertainty (KSVM-iGSU), is used in the problems of video event detection and video aesthetic quality assessment. The experimental results show that exploiting input uncertainty, especially in problems where only a limited number of positive training examples are provided, can lead to better classi cation, detection, or retrieval performance. Finally, we present a preliminary study on how the above ideas can be used under the deep convolutional neural networks learning paradigm so as to exploit inherent sources of uncertainty, such as spatial pooling operations, that are usually used in deep networks.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:766186
Date January 2018
CreatorsTzelepis, Christos
PublisherQueen Mary, University of London
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://qmro.qmul.ac.uk/xmlui/handle/123456789/42763

Page generated in 0.0022 seconds