Rheumatoid Arthritis is an inflammatory joint disease that is one of the most common autoimmune diseases in the world. The treatment usually starts with a first-line treatment called Methotrexate, but it is often insufficient. One of the most common second-line treatments is Tumor Necrosis Factor inhibitors (TNFi). Although some patients respond to TNFi, it has a risk of side effects, including infections. Hence, ability to predict patient responses to TNFi becomes important to choose the correct treatment. This work presents a new approach to predict if the patients were still on TNFi, 1 year after they started, by using a generative neural network architecture called Variational Autoencoder (VAE). We combined a VAE and a classifier neural network to create a supervised learning model called Supervised VAE (SVAE), trained on two versions of a tabular dataset containing Swedish register data. The datasets consist of 7341 patient records, and our SVAE achieved an AUROC score of 0.615 on validation data. Nevertheless, compared to machine learning models previously used for the same prediction task, SVAE achieved higher scores than decision trees and elastic net but lower scores than random forest and gradient-boosted decision tree. Despite the regularization effect that VAEs provide during classification training, the scores achieved by the SVAEs tested during this thesis were lower than the acceptable discrimination level. / Reumatoid artrit är en inflammatorisk ledsjukdom och är en av de vanligaste autoimmuna sjukdomarna i världen. Medicinsk behandling börjar ofta med Metotrexat. Vid brist på respons så fortsätter behandlingen ofta med Tumor Necrosis Inhibitors (TNFi). På grund av biverkningar av TNFi, såsom ökad risk för infektioner, är det viktigt att kunna prediktera patienters respons på behandlingen. Här presenteras ett nytt sätt att prediktera om patienter fortfarande stod på TNFi ett år efter initiering. Vi kombinerade Variational Autoencoder (VAE), ett generativt neuralt nätverk, med ett klassificeringsnätverk för att skapa en övervakad inlärningsmodell kallad Supervised VAE (SVAE). Denna tränades på två versioner av svenska registerdata, vilka innehöll information om 7341 patienter i tabellform. Vår SVAE-modell uppnådde 0,615 AUROC på valideringsdata. I jämförelse med maskininlärningsmodeller som tidigare använts för samma prediktionsuppgift uppnådde SVAE högre poäng än Decision Tree och Elastic Net men lägre poäng än Random Forest och Gradient-Boosted Decision Tree. Trots regulariseringseffekten som VAE ger under träning så var poängen som de testade SVAEmodellerna uppnår lägre än den acceptabla diskrimineringsnivån.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-340094 |
Date | January 2023 |
Creators | Arda Yilal, Serkan |
Publisher | KTH, Skolan för elektroteknik och datavetenskap (EECS) |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | Swedish |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | TRITA-EECS-EX ; 2023:776 |
Page generated in 0.0027 seconds