Return to search

Molekulové mechanismy homocystinurie: prostorové uspořádání lidské cystathionin β-synthasy / Molecular mechanisms in homocystinuria: spatial arrangement of human cystathionine β-synthase

Protein misfolding is considered to be the major pathogenic mechanism in homocystinuria due to cystathionine beta-synthase (CBS) deficiency. The aim of this work was to study molecular mechanisms underlying protein misfolding of CBS mutants. Firstly, we studied spatial arrangement of normal human CBS protein. Using data from differential covalent labeling of solvent-exposed aminoacid residues, we identified interdomain contact area between the catalytic core and the regulatory domain in human CBS, and we subsequently generated the structural model of the full-length CBS. In the next step, we studied evolutionary divergence of CBS protein structures. We performed phylogenetic analysis that revealed unique spatial arrangement of CBS enzyme in nematodes; the domain architecture of CBS in Caenorhabditis elegans was studied experimentally in more detail. Finally, we determined conformational properties of a representative set of human CBS mutants that exhibited in various extent affected formation of tetramers and decreased catalytic activity. Using thermolysin-based proteolytic techniques for analysis of nine mutants expressed in E.coli, we found that an unfolded structure is a common intermediate occurring in CBS misfolding. The importance of protein unfolding for pathogenesis of CBS deficiency was...

Identiferoai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:440208
Date January 2012
CreatorsHnízda, Aleš
ContributorsKožich, Viktor, Holada, Karel, Jiráček, Jiří
Source SetsCzech ETDs
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/doctoralThesis
Rightsinfo:eu-repo/semantics/restrictedAccess

Page generated in 0.0024 seconds