In this thesis, the spectral behavior of the fundamental and sum-frequency waves, generated from the surface of a thin metal film in the Kretschmann configuration, is theoretically studied with coherent ultrashort pulses. As a first exploration of considering spectral response in nonlinear plasmonics, it is shown that the spectra of reflected sum-frequency waves exhibit pronounced shifts for the incident fundamental waves close to the plasmon coupling angle, whereas meanwhile those of reflected fundamental waves display energy holes. We also demonstrate that the scale of discovered plasmon-enhanced spectral changes is strongly influenced by the magnitude of the incidentce angle and the source pulse duration, and at a certain angle a spectral switch is observed. The appearance of large sum-frequency wave shifts can serve as an unambiguous plasmon signatur in nonlinear surface spectroscopy. Also, the discovered spectral switch can trigger extremely surface-sensitive nonlinear plasmonic sensors.
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:NSHD.ca#10222/36308 |
Date | 12 August 2013 |
Creators | Wang, Luyu |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | English |
Detected Language | English |
Page generated in 0.0016 seconds