A prototype of a haptic and virtual reality simulator has been developed for simulation of the bone milling and material removal process occurring in several operations, e.g. temporal bone surgery or dental milling. The milling phase of an operation is difficult, safety critical and very time consuming. Reduction of operation time by only a few percent would in the long run save society large expenses. In order to reduce operation time and to provide surgeons with an invaluable practicing environment, this licentiate thesis discusses the introduction of a simulator system to be used in both surgeon curriculum and in close connection to the actual operations. The virtual reality and haptic feedback topics still constitute a young and unexplored area. It has only been active for about 10-15 years for medical applications. High risk training on real patients and the change from open surgery to endoscopic procedures have enforced the introduction of haptic and virtual reality simulators for training of surgeons. Increased computer power and the similarity to the successful aviation simulators also motivate to start using simulators for training of surgical skills. The research focus has been twofold: 1) To develop a well working VR-system for realistic graphical representation of the skull itself including the changes resulting from milling, and 2) to find an efficient algorithm for haptic feedback to mimic the milling procedure using the volumetric Computer Tomography (CT) data of the skull. The developed haptic algorithm has been verified and tested in the simulator. The visualization of the milling process is rendered at a graphical frame rate of 30 Hz and the haptic rendering loop is updated at 1000 Hz. Test results show that the real-time demands are fulfilled. The visual and haptic implementations have been the two major steps to reach the over all goal with this research project. A survey study is also included where the use of VR and haptic simulators in the surgical curriculum is investigated. The study starts with a historical perspective of the VR and haptic topics and is built up by answering different questions related to this topic and the implementation of simulators at the medical centres. The questions are of general concern for those developing surgical VR and haptic simulators. Suggested future work includes modelling, development and validation of the haptic forces occurring in the milling process and, based on this, implementation in the simulator system. Also, further development of the simulator should be done in close cooperation with surgeons in order to get appropriate feedback for further improvements of the functionality and performance of the simulator. / QC 20101112
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-4052 |
Date | January 2006 |
Creators | Eriksson, Magnus G. |
Publisher | KTH, Skolan för teknik och hälsa (STH), Haninge : KTH Syd |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Licentiate thesis, comprehensive summary, info:eu-repo/semantics/masterThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | Trita-STH : report, 1653-3836 ; 2006:3 |
Page generated in 0.0024 seconds