Return to search

Numerical Study of Energy Loss Mechanisms in Oscillating Underwater Explosion (UNDEX) Bubbles

In this study a modern hydrocode, blastFoam, that was designed for multi-phase compressible flow problems with applications suited for high-explosive detonation was investigated for underwater explosion (UNDEX) events. The problem of over-prediction for long-term UNDEX bubble behavior in modern hydrocodes that is known to be due to neglected secondary energy-loss mechanisms is evaluated. A single secondary energy-loss mechanism is established as the most significant loss mechanism that is being disregarded in current hydrocodes. The leading secondary energy-loss mechanism is formulated into a computational model that modifies the Jones-Wilkins-Lee (JWL) equation of state (EOS). Explanation and guidance for implementing the model in an Finite Volume Method (FVM) Eulerian-based hydrocode is provided. Through this research this thesis aims to improve long-term UNDEX bubble behavior prediction. Which is apart of a larger effort to improve numerical and computational predictions of UNDEX-induced structural ship response. / M.S. / Predicting the bubble dynamics of an underwater explosion (UNDEX) event is of great importance for the survivability of America’s warships. Shock waves from high-energy explosives are destructive to anything and everything nearby. Therefore, the design and development of military machinery rely on the accurate predictions of computational simulations. Computational solvers must be able to simulate the initial propagating shock waves from an underwater explosion, as well as the smaller following shock waves from the oscillating UNDEX bubble. Current incompressible solvers neglect the important compressible effects needed to predict the behavior for the UNDEX bubble oscillation cycle. If America’s Navy cannot predict the long-term damaging effects that a warship may encounter from an UNDEX bubble, then America’s warships and crew could not survive at battle. This study considers the assumptions used to simplify current UNDEX computational solvers in order to investigate and organize a compressible long-term simulation model. This model improves the multi-pulse bubble dynamic predictions for an UNDEX event, and will in return help design a long-term battle-ready warship for America’s future warfare.

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/112065
Date29 September 2022
CreatorsJamerson, Colby
ContributorsAerospace and Ocean Engineering, Paterson, Eric, Brown, Alan, Gilbert, John
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
LanguageEnglish
Detected LanguageEnglish
TypeThesis
FormatETD, application/pdf, application/pdf
RightsCreative Commons Attribution-ShareAlike 4.0 International, http://creativecommons.org/licenses/by-sa/4.0/

Page generated in 0.0019 seconds