Return to search

Méthodologies de couplage fort des systèmes dynamiques : approches linéaires et non-linéaires

Dans cette thèse, nous nous sommes intéressés au comportement vibratoire d’un véhicule soumis à une excitation moteur dans deux plages de régimes différentes : basses fréquences (0 – 50 Hz) et moyennes fréquences (200 – 800 Hz). Le but était de fournir des méthodologies numériques permettant de prendre en compte les phénomènes de couplage vibratoires existant entre les différents sous-systèmes constitutifs d’une caisse automobile.En basses fréquences, nous avons adopté une approche globale où chaque sous-système a été caractérisé séparément. Tout d’abord, le comportement de la caisse a été caractérisé expérimentalement et numériquement par une méthode jusqu’alors réservée au domaine aéronautique dite d’appropriation modale. Les résultats numériques ont alors été confrontés aux résultats expérimentaux. Par ailleurs, le comportement non-linéaire en amplitude et en fréquence des pièces de filtration moteur (SMO) a été déterminé sur banc de mesure. Un fort comportement non-linéaire a pu être constaté et ces caractérisations ont été exploitées en construisant des nappes raideur-fréquence-amplitude. Dans un second temps, des méthodes numériques permettant de réaliser l’assemblage non - linéaire de la caisse et du groupe moto – propulseur (GMP) via les pièces de filtration non linéaires ont été mises en place. Pour ce faire, nous avons développé une méthode dite de Balance Harmonique (HBM) qui permet de prédire la dynamique non-linéaire de systèmes complexes. Afin d’appliquer cette méthode à une structure industrielle, nous avons utilisé une méthode de condensation sur les degrés de liberté non-linéaires, technique bien adaptée aux cas de structures linéaires reliées localement par des éléments de liaison non-linéaires. Cette méthode a tout d’abord été validée sur un périmètre restreint comprenant un GMP relié à un bâti rigide par ses pièces de filtration. A cette occasion, des phénomènes non-linéaires importants ont été constatés expérimentalement. Un modèle numérique de GMP a été construit et l’utilisation de la méthode HBM a permis de retrouver ces constats. Enfin, après avoir réalisé l’assemblage non-linéaire des trois sous-systèmes GMP - SMO - Caisse, la structure a été excitée de plusieurs manières différentes : appropriation numérique non-linéaire et excitation réelle d’un GMP. En moyennes fréquences, nous avons présenté dans ce mémoire une étude importante pour le groupe Renault concernant la caractérisation des pièces de filtration en moyennes fréquences. Au cours de la thèse, une méthodologie numérique basée sur la méthode FBS permettant de déconfiner (ou découpler) une suspension moteur initialement reliée à un banc de mesure a été proposée. La faisabilité numérique du déconfinement a ainsi été démontrée. Cette méthode permet donc, en dépit de phénomènes de couplage avec le banc de mesure, d’obtenir le comportement vibratoire intrinsèque de la pièce. / In this thesis we studied the vibratory behaviour of a whole vehicle under engine excitation at low frequencies (0 – 50 Hz) and medium frequencies (200 – 800 Hz). The aim of the thesis was to provide numerical methodologies to take into account coupling effects between all the sub-systems constituting a whole car. In low frequencies, we used a global approach where each subsystem was characterized separately before coupling. First the car body was characterised both experimentally and numerically using a modal appropriation method that is commonly used in the aeronautic field. Numerical shapes of the modes were correlated to experimental shapes. In addition, the amplitude and frequency non linear behaviour of the engine mounts was measured on a test bench. A strong non linear behaviour was observed and stiffness – frequency – amplitude layers were constructed based on those data.Secondly, numerical methods were developed in order to calculate the coupled non linear response between the engine, the engine mounts and the car body. We used a harmonic balance method that allows calculating the non linear dynamics of complex mechanical systems. In order to apply this method to large industrial finite element models, a condensation method on non linear degrees of freedom was developed. This technique is well adapted to problems of linear structures linked together with localnon linear joints. This method was validated on the isolated engine linked to a bench by the engine mounts. Strong non linear phenomena on the rigid body modes of the engine were observed experimentally.A numerical model of the engine was developed and the HBM method allowed reproducing these non linear phenomena. Eventually, the non linear model of the whole vehicle was coupled and excited by different efforts. First we calculated the response of the assembly using the appropriation method. Then, the structure was excited by a real four – cylinder engine excitation.In medium frequencies, we presented an important study for the group Renault concerning the stiffness measurement of the engine mounts. A numerical methodology based on the FRF Based Substructuring(FBS) method was developed. This method was applied to uncouple an engine mount initially coupled to a test bench. The numerical feasibility of the method was proved and allowed to get the own vibratory behaviour of the engine mount despite coupling phenomena with the test bench.

Identiferoai:union.ndltd.org:theses.fr/2011ECDL0012
Date29 March 2011
CreatorsBarillon, Franck
ContributorsEcully, Ecole centrale de Lyon, Jézéquel, Louis, Sinou, Jean-Jacques
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0029 seconds