The early stages of a product’s design are a critical time for decisions that impact the entire life-cycle cost. Product designers have mastered the first generation; however, they currently do not have the ability to know the impact of their decisions on the multi-generational view. This thesis aims at closing the gap between total life-cycle information and the traditional design process in order to harbor sustainable value creation among all stakeholders involved. A framework is presented that uses a combination of a life-cycle costing methodology and an evolutionary algorithm in order to achieve a sustainability assessment for a true multi-generational component. An illustration of the implementation of the framework shows the value to current engineering scenarios. A foundation is also laid for the overall future vision of this work to utilize proper databases and existing design tools to evaluate the overall sustainability and life-cycle cost of multi-generational components.
Identifer | oai:union.ndltd.org:uky.edu/oai:uknowledge.uky.edu:me_etds-1061 |
Date | 01 January 2015 |
Creators | Bradley, Ryan T. |
Publisher | UKnowledge |
Source Sets | University of Kentucky |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Theses and Dissertations--Mechanical Engineering |
Page generated in 0.0108 seconds