Return to search

Concrete Made with Fine Recycled Concrete Aggregate (FRCA): A Feasibility Study

In the process of crushing concrete waste, significant amounts of fine by-products, the so called fine recycled concrete aggregates (FRCA), are generated and excluded from potential use. Limited research has thoroughly investigated the performance of concrete mixes with FRCA, very likely due to the complexity in analysing non-negligible amounts of adhered residual cement paste (RCP). Although some studies have proposed promising sustainable mix-design procedures accounting for the different microstructure when using coarse recycled concrete aggregates (CRCA), no similar approach exists for FRCA concrete. In this work, two promising procedures for mix-designing eco-efficient concrete with 100% FRCA are proposed accounting for the presence of RCP to reduce cement content in new mixtures. First, built on top of the existing procedure for CRCA mix-design, modifications to the Equivalent Volume (EV) method were introduced toconsider full replacement of fine natural sand by FRCA. Second, based on the concept of continuous Particle Packing Models (PPM), an optimized procedure was proposed to allow maximum packing density of FRCA mix linked to a given level of measured RCP content. Results verified the feasibility of producing eco-efficient concrete mixes with 100% FRCA, emphasizing the PPM mixes to report superior rheological and mechanical performance along with suitable durability-related properties. Yet, results also indicated the influence of simple or multistage crushed FRCA on the overall performance of mixes.

Identiferoai:union.ndltd.org:uottawa.ca/oai:ruor.uottawa.ca:10393/39619
Date13 September 2019
CreatorsDe Freitas Macedo, Hian
ContributorsSanchez, Leandro
PublisherUniversité d'Ottawa / University of Ottawa
Source SetsUniversité d’Ottawa
LanguageEnglish
Detected LanguageEnglish
TypeThesis
Formatapplication/pdf

Page generated in 0.013 seconds