Return to search

Accelerating Quantum Monte Carlo via Graphics Processing Units

An exact quantum Monte Carlo algorithm for interacting particles in the spatial continuum is extended to exploit the massive parallelism offered by graphics processing units. Its efficacy is tested on the Calogero-Sutherland model describing a system of bosons interacting in one spatial dimension via an inverse square law. Due to the long range nature of the interactions, this model has proved difficult to simulate via conventional path integral Monte Carlo methods running on conventional processors. Using Graphics Processing Units, optimal speedup factors of up to 640 times are obtained for N = 126 particles. The known results for the ground state energy are confirmed and, for the first time, the effects of thermal fluctuations at finite temperature are explored.

Identiferoai:union.ndltd.org:uvm.edu/oai:scholarworks.uvm.edu:graddis-1727
Date01 January 2017
CreatorsHimberg, Benjamin Evert
PublisherScholarWorks @ UVM
Source SetsUniversity of Vermont
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceGraduate College Dissertations and Theses

Page generated in 0.0017 seconds