The supermature Middle-Late Ordovician Swan Peak quartz arenite was deposited on the western Laurentia passive margin and is very fine to fine grained, well-rounded, well-sorted, and silica-cemented. Laurentia was positioned over the equator during the Middle-Late Ordovician, suggesting that basement rock along the Transcontinental Arch was intensely eroded in a humid climate to produce this and other coeval quartz arenites. To determine provenance for the Swan Peak Quartzite, zircon grains were analyzed using LA-ICP-MS and the results were constrained within a sequence stratigraphic framework. Depositional environments of the Swan Peak Quartzite record an offshore-to-onshore transition with five facies (A-E). Facies A only occurs at the base of the Bear Lake section and may record an incised valley or localized embayment. It is the deepest water facies in the succession containing shale and quartz arenite interbeds. Facies B through E are interpreted as lower, middle, upper shoreface/foreshore depositional environments, respectively, based on primary sedimentary structures and bioturbation. Detrital zircon age spectra of the Swan Peak Quartzite have four distinct populations: the two main populations are at 1.8 - 2.0 Ga (Paleoproterozoic) and between 2.5 - 3.0 Ga (Archean), with a smaller, but persistent, population at 2.0 - 2.1 Ga, and a very minor 0.8 - 1.2 Ga (Mesoproterozoic) population occurring mainly in the tops of the measured sections. The base of each section has a larger Archean peak whereas the top of each section is predominantly Paleoproterozoic grains. Zircon data have overlap and similarity values ranging between 0.531 - 0.771 and 0.506 - 0.881, respectively, which indicates zircon age spectra of the Swan Peak Quartzite is similar to other Cordilleran Ordovician quartzites and that recycling of heterogeneous underlying sedimentary rocks was minimal. The Wyoming Craton (2.5 - 2.8 Ga) and the Trans-Hudson Orogen (1.8 - 2.0 Ga) provinces near the paleoequator likely provided the majority of zircons in the Swan Peak Quartzite. The source for the 2.0 - 2.1 Ga grains is currently unknown and the 0.8 - 1.2 Ga grains are interpreted to reflect Mesoproterozoic Laurentian tectonism. Sediment input varied in response to sea level fluctuations. Longshore transport was likely an important process in redistributing grains along the coastline during later deposition of the Swan Peak Quartzite.
Identifer | oai:union.ndltd.org:tamu.edu/oai:repository.tamu.edu:1969.1/ETD-TAMU-2011-12-10492 |
Date | 2011 December 1900 |
Creators | Wulf, Tracy David |
Contributors | Pope, Michael C., Miller, Brent, Thomas, Deborah |
Source Sets | Texas A and M University |
Language | en_US |
Detected Language | English |
Type | Thesis, thesis, text |
Format | application/pdf |
Page generated in 0.0021 seconds