Return to search

厚尾分配在財務與精算領域之應用 / Applications of Heavy-Tailed distributions in finance and actuarial science

本篇論文將厚尾分配(Heavy-Tailed Distribution)應用在財務及保險精算上。本研究主要有三個部分:第一部份是用厚尾分配來重新建構Lee-Carter模型(1992),發現改良後的Lee-Carter模型其配適與預測效果都較準確。第二部分是將厚尾分配建構於具有世代因子(Cohort Factor)的Renshaw and Haberman模型(2006)中,其配適及預測效果皆有顯著改善,此外,針對英格蘭及威爾斯(England and Wales)訂價長壽交換(Longevity Swaps),結果顯示此模型可以支付較少的長壽交換之保費以及避免低估損失準備金。第三部分是財務上的應用,利用Schmidt等人(2006)提出的多元仿射廣義雙曲線分配(Multivariate Affine Generalized Hyperbolic Distributions; MAGH)於Boyle等人(2003)提出的低偏差網狀法(Low Discrepancy Mesh; LDM)來定價多維度的百慕達選擇權。理論上,LDM法的數值會高於Longstaff and Schwartz(2001)提出的最小平方法(Least Square Method; LSM)的數值,而數值分析結果皆一致顯示此性質,藉由此特性,我們可知道多維度之百慕達選擇權的真值落於此範圍之間。 / The thesis focus on the application of heavy-tailed distributions in finance and actuarial science. We provide three applications in this thesis. The first application is that we refine the Lee-Carter model (1992) with heavy-tailed distributions. The results show that the Lee-Carter model with heavy-tailed distributions provide better fitting and prediction. The second application is that we also model the error term of Renshaw and Haberman model (2006) using heavy-tailed distributions and provide an iterative fitting algorithm to generate maximum likelihood estimates under the Cox regression model. Using the RH model with non-Gaussian innovations can pay lower premiums of longevity swaps and avoid the underestimation of loss reserves for England and Wales. The third application is that we use multivariate affine generalized hyperbolic (MAGH) distributions introduced by Schmidt et al. (2006) and low discrepancy mesh (LDM) method introduced by Boyle et al. (2003), to show how to price multidimensional Bermudan derivatives. In addition, the LDM estimates are higher than the corresponding estimates from the Least Square Method (LSM) of Longstaff and Schwartz (2001). This is consistent with the property that the LDM estimate is high bias while the LSM estimate is low bias. This property also ensures that the true option value will lie between these two bounds.

Identiferoai:union.ndltd.org:CHENGCHI/G0097358505
Creators劉議謙, Liu, I Chien
Publisher國立政治大學
Source SetsNational Chengchi University Libraries
Language英文
Detected LanguageEnglish
Typetext
RightsCopyright © nccu library on behalf of the copyright holders

Page generated in 0.0019 seconds