Return to search

Toward Scalable Human Interaction with Bio-Inspired Robot Teams

Bio-inspired swarming behaviors provide an effective decentralized way of coordinating robot teams. However, as robot swarms increase in size, bandwidth and time constraints limit the number of agents a human can communicate with and control. To facilitate scalable human interaction with large robot swarms it is desirable to monitor and influence the collective behavior of the entire swarm through limited interactions with a small subset of agents. However, it is also desirable to avoid situations where a small number of agent failures can adversely affect the collective behavior of the swarm. We present a bio-inspired model of swarming that exhibits distinct collective behaviors and affords limited human interaction to estimate and influence these collective behaviors. Using a simple naive Bayes classifier, we show that the global behavior of a swarm can be detected with high accuracy by sampling local information from a small number of agents. We also show that adding a bio-inspired form of quorum sensing to a swarm increases the scalability of human-swarm interactions and also provides an adjustable threshold on the swarm's vulnerability to agent failures.

Identiferoai:union.ndltd.org:BGMYU2/oai:scholarsarchive.byu.edu:etd-4775
Date08 March 2013
CreatorsBrown, Daniel Sundquist
PublisherBYU ScholarsArchive
Source SetsBrigham Young University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceTheses and Dissertations
Rightshttp://lib.byu.edu/about/copyright/

Page generated in 0.0017 seconds