Since the liberalisation of the energy market in Europe in the early 1990s, much opportunity to trade electricity as a commodity has arisen. One significant consequence of this movement is that market prices have become more volatile instead of its tradition constant rate of supply. Spot price markets have also been introduced, affecting the demand of electricity as companies now have the option to not only produce their own supply but also purchase this commodity from the market. Following the liberalisation of the energy market, hence creating a greater demand for trading of electricity and other types of energy, various types of options related to the sales, storage and transmission of electricity have consequently been introduced. Particularly, swing options are popular in the electricity market. As we know, swing-type derivatives are given in various forms and are mainly traded as over-the-counter (OTC) contracts at energy exchanges. These options offer flexibility with respect to timing and quantity. Traditionally, the Geometric Brownian Motion (GBM) model is a very popular and standard approach for modelling the risk neutral price dynamics of underlyings. However, a limitation of this model is that it has very few degrees of freedom, as it does not capture the complex behaviour of electricity prices. In short the GBM model is inefficient in the pricing of options involving electricity. Other models have subsequently been used to bridge this inadequacy, e.g. spot price models, futures price models, etc. To model risk-neutral commodity prices, there are basically two different methodologies, namely spot and futures or so-called term structure models. As swing options are usually written on spot prices, by which we mean the current price at which a particular commodity can be bought or sold at a specified time and place, it is important for us to examine these models in order to more accurately inculcate their effect on the pricing of swing options. Monte Carlo simulation is also a widely used approach for the pricing of swing options in the electricity market. Theoretically, Monte Carlo valuation relies on risk neutral valuation and the technique used is to simulate as many (random) price paths of the underlying(s) as possible, and then to average the calculated payoff for each path, discounted to today's prices, giving the value of the desired derivative. Monte Carlo methods are particularly useful in the valuation of derivatives with multiple sources of uncertainty or complicated features, like our electricity swing options in question. However, they are generally too slow to be considered a competitive form of valuation, if any analytical techniques of valuation exist. In other words, the Monte Carlo approach is, in a sense, a method of last resort. In this thesis, we aim to examine a numerical method involved in the pricing of swing options in the electricity market. We will consider an existing and widely accepted electricity price process model, use the finite volume method to formulate a numerical scheme in order to calibrate the prices of swing options and make a comparison with numerical solutions obtained using the theta-scheme. Further contributions of this thesis include a comparison of results and also a brief discussion of other possible methods.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:hh-13931 |
Date | January 2010 |
Creators | Guo, Matilda, Lapenkova, Maria |
Publisher | Högskolan i Halmstad, Sektionen för Informationsvetenskap, Data– och Elektroteknik (IDE), Högskolan i Halmstad, Tillämpad matematik och fysik (MPE-lab), Högskolan i Halmstad, Sektionen för Informationsvetenskap, Data– och Elektroteknik (IDE), Högskolan i Halmstad, Tillämpad matematik och fysik (MPE-lab) |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0022 seconds