We apply branched covering techniques to construct minimal simply-connected symplectic 4-manifolds with small χ_h values. We also use these constructions to provide an alternate proof that for each s ≥ 0, there exists a positive integer λ(s) such that each pair (j,8j+s) with j ≥ λ(s) is realized as (χ_h(M),c_1^2(M)) for some minimal simply-connected symplectic M. The smallest values of λ(s) currently known to the author are also explicitly computed for
0 ≤ s ≤ 99. Our computations in these cases populate 19 952 points in the (χ,c)-plane not previously realized in the existing literature.
Identifer | oai:union.ndltd.org:WATERLOO/oai:uwspace.uwaterloo.ca:10012/3857 |
Date | January 2008 |
Creators | Hughes, Mark Clifford |
Source Sets | University of Waterloo Electronic Theses Repository |
Language | English |
Detected Language | English |
Type | Thesis or Dissertation |
Page generated in 0.0016 seconds