Numerical cognition has been shown to share many aspects of spatial cognition, both behavioural and neurological. However, it is unclear whether a particular type of spatial cognition, visuospatial mental imagery (VSMI), may play a role in symbolic numerical representation. In this thesis, I first show that mental rotation, a form of VSMI, is related to two measures of basic numerical representation. I then show that number-space synaesthesia (NSS), a rare type of VSMI involving visualised spatial layouts for numbers, does not show an advantage in mental rotation, but shows interference in number line mapping. I next present a study investigating links between NSS and the ability to learn novel numerical symbols. I demonstrate that NSS shows an advantage at learning novel numerals, and that transcranial random noise stimulation, which increases cortical excitability, confers broadly similar advantages that nonetheless differ in subtle ways. I present a study of transcranial alternating current stimulation on the same symbol learning paradigm, which fails to demonstrate effects. Lastly, I present data showing that strength of numerical representation in these newly-learnt symbols is correlated with a measure of mental rotation, and also with visual recognition ability for the symbols after, but not before, training. All together, these findings suggest that VSMI does indeed play a role in numerical cognition, and that it may do so from an early stage of learning symbolic numbers.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:711793 |
Date | January 2014 |
Creators | Thompson, Jacqueline Marie |
Contributors | Kadosh, Roi Cohen |
Publisher | University of Oxford |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Source | https://ora.ox.ac.uk/objects/uuid:6f11adba-5ff3-4f3b-b254-fda6ab0ed5a7 |
Page generated in 0.002 seconds