Return to search

Synchronization in dynamic neural networks

This thesis is concerned with the function and implementation of synchronization in networks of oscillators. Evidence for the existence of synchronization in cortex is reviewed and a suitable architecture for exhibiting synchronization is defined. A number of factors which affect the performance of synchronization in networks of laterally coupled oscillators are investigated. It is shown that altering the strength of the lateral connections between nodes and altering the connective scope of a network can be used to improve synchronization performance. It is also shown that complete connective scope is not required for global synchrony to occur. The effects of noise on synchronization performance are also investigated and it is shown that where an oscillator network is able to synchronize effectively, it will also be robust to a moderate level of noise in the lateral connections. Where a particular oscillator model shows poor synchronization performance, it is shown that noise in the lateral connections is capable of improving synchronization performance. A number of applications of synchronizing oscillator networks are investigated. The use of synchronized oscillations to encode global binding information is investigated and the relationship between the form of grouping obtained and connective scope is discussed. The potential for using learning in synchronizing oscillator networks is illustrated and an investigation is made into the possibility of maintaining multiple phases in a network of synchronizing oscillators. It is concluded from these investigations that it is difficult to maintain multiple phases in the network architecture used throughout this thesis and a modified architecture capable of producing the required behaviour is demonstrated.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:386610
Date January 1993
CreatorsCairns, David Edward
PublisherUniversity of Stirling
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://hdl.handle.net/1893/21611

Page generated in 0.0019 seconds