Counting is the first formal exposure for children to learn numerals, which are constructed with a set of syntactic rules. Young children undergo many stages of rote-memorization of the sequence and eventually count through 100. What core knowledge is necessary to expand their number knowledge to higher numbers? The compositionality of numerals is a key to understanding the natural number system as in learning languages. Higher numbers (e.g., two hundred five) are constructed with the lexical items such as earlier numbers (e.g., one to nine) and multipliers. If children develop their understanding of the compositionality of numerals, they might comprehend complex numerals far beyond their count list. In a novel task, the Number Word Comparison task, we tested whether children’s skill to compare the ones (e.g., five versus eight) can extend to complex numerals (e.g., two hundred five versus two hundred eight). Sixty-eight preschoolers completed three tasks, which measured counting fluency, number word comparison skills, and their cardinal principle knowledge. Children who were capable of comparing the ones performed above chance on average in comparing complex numerals. The performance in comparing complex numerals was strongly associated with their counting fluency. Based on these empirical results, we discuss a linguistic account of number acquisition in early childhood, proposing a link between learning the syntax of numerals and understanding the meaning behind them.
Identifer | oai:union.ndltd.org:UMASS/oai:scholarworks.umass.edu:masters_theses_2-2059 |
Date | 02 April 2021 |
Creators | Hwang, Jihyun |
Publisher | ScholarWorks@UMass Amherst |
Source Sets | University of Massachusetts, Amherst |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Masters Theses |
Page generated in 0.0023 seconds