Factorized backprojection is a processing algorithm for reconstructing images from data collected by synthetic aperture radar (SAR) systems. Factorized backprojection requires less computation than conventional time-domain backprojection with little loss in accuracy for straight-line motion. However, its implementation is not as straightforward as direct backprojection. Further, implementing an azimuth window has been difficult in previous versions of factorized backprojection. This thesis provides a new, easily parallelizable formulation of factorized backprojection designed for both pulsed and linearly frequency modulated continuous wave (LFM-CW) stripmap SAR data. A method of easily implementing an azimuth window as part of the factorized backprojection algorithm is introduced. The approximations made in factorized backprojection are investigated and a detailed analysis of the corresponding errors is provided. We compare the performance of windowed factorized backprojection to direct backprojection for simulated and actual SAR data.
Identifer | oai:union.ndltd.org:BGMYU2/oai:scholarsarchive.byu.edu:etd-4484 |
Date | 19 April 2012 |
Creators | Moon, Kyra Michelle |
Publisher | BYU ScholarsArchive |
Source Sets | Brigham Young University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Theses and Dissertations |
Rights | http://lib.byu.edu/about/copyright/ |
Page generated in 0.002 seconds