Sparse parameter estimation is an important aspect of system identification, as it allows for reducing the order of a model, and also some models in system identification inherently exhibit sparsity in their parameters. The accuracy of the estimated sparse model depends directly on the performance of the sparse estimation methods. It is well known that the accuracy of a sparse estimation method relies on the correlations between the regressors of the model being estimated. Mutual coherence represents the maximum of these correlations. When the parameter vector is known to be sparse, accurate estimation requires a low mutual coherence. However, in system identification, a major challenge arises from the construction of the regressor based on time series data, which often leads to a high mutual coherence. This conflict hinders accurate sparse estimation. To address this issue, the first part of this thesis introduces novel methods that reduce mutual coherence through linear coordinate transformations. These methods can be integrated with any sparse estimation techniques. Our numerical studies demonstrate significant improvements in performance compared to state-of-the-art sparse estimation algorithms. In the second part of the thesis, we shift our focus to optimal input design in system identification, which aims to achieve maximum accuracy in a model based on specific criteria. The original optimal input design techniques lack coherence constraints between the input sequences, often resulting in high mutual coherence and, consequently, increased sparse estimation errors for sparse models. Therefore, the second part of the thesis concentrates on designing optimal input for sparse models. We formulate the proposed methods and propose numerical algorithms using alternating minimization. Additionally, we compare the performance of our proposed methods with state-of-the-art input design algorithms, and we provide theoretical analysis of the proposed methods in both parts of the thesis. / Gles parameterestimering är viktigt inom systemidentifiering eftersom vissa modeller har naturligt förekommande gleshet i dess parametrar, men även för att det kan låta en minska ordningen av icke-glesa modeller. Noggrannheten av en skattad gles modell beror direkt på prestandan av de glesa estimeringsmetoderna. Det ¨ar välkänt att noggrannheten av en gles estimeringsmetod beror på korrelationer mellan regressorerna av den skattade modellen. Ömsesidig koherens (eng: mutual coherence) representerar maximum av dessa korrelationer. Noggrann estimering kräver låg ömsesidig koherens i de fallen då det är känt att parametervektorn är gles. En stor utmaning inom systemidentifiering orsakas av att, när en regressor konstrueras av tidsserie-data, så leder detta ofta till hög ömsesidig koherens. Denna konflikt hindrar noggrann gles estimering. För att åtgärda detta problem så introducerar avhandlingens första del nya metoder som minskar den ömsesidiga koherensen genom linjära koordinattransformationer. Dessa metoder är möjliga att kombinera med godtyckliga glesa estimeringsmetoder. Våra numeriska studier visar märkvärdig förbättring av prestanda jämfört med de bästa tillgängliga algoritmerna för gles parameterestimering. I avhandlingens andra del så ändrar vi vårt fokus till design utav optimala insignaler i systemidentifiering, där målet är att uppnå maximal noggrannhet i en modell, baserat på specifika kriterier. De ursprungliga metoderna för design av insignaler saknar bivillkor för ömsesidig koherens mellan insignalssekvenserna, vilket ofta resulterar i hög ömsesidig koherens och därmed också högre estimeringsfel för glesa modeller. Det är därför avhandlingens andra del fokuserar på att designa optimala insignaler för glesa modeller. Vi formulerar de föreslagna metoderna och erbjuder numeriska algoritmer som använder sig utav alternerande minimering. Vi jämför dessutom prestandan av vår metod med de bästa tillgängliga metoderna för design av insignaler, och vi presenterar även teoretisk analys av de föreslagna metoderna i avhandlingens båda delar. / <p>QC 20230911</p>
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-335895 |
Date | January 2023 |
Creators | Parsa, Javad |
Publisher | KTH, Reglerteknik, Stockholm |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Licentiate thesis, monograph, info:eu-repo/semantics/masterThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | TRITA-EECS-AVL ; 2023:58 |
Page generated in 0.003 seconds