Materialfluss-Systeme für den Stückgut-Transport auf der Basis von Stetigförderern sind meist modular aufgebaut. Das Verhalten gleichartiger Materialfluss-Elemente unterscheidet sich durch technische Parameter (z.B. geometrische Größen) und durch unterschiedliche logistische Belastungen der Elemente im System. Durch die in der Arbeit getroffenen Modellannahmen werden für die Elemente nur lokale Steuerungsregeln zugelassen und für das System Blockierfreiheit vorausgesetzt. Das Verhalten eines Materialfluss-Elements hängt dann nicht mehr von Zuständen anderer Elemente des Systems ab sondern nur noch von den stochastischen Prozessen des Eintreffens von Transporteinheiten. Die Auslastung eines Elements, die Quantile der Warteschlangenlängen an seinen Eingängen und die Variationskoeffizienten seiner Abgangsströme sind statistische Kenngrößen. Sie hängen im Wesentlichen nur von der Klasse des Elements, seinen technischen Parametern, den Parametern der Eingangsströme und der lokalen Transportmatrix ab. Diese funktionellen Abhängigkeiten sind im Allgemeinen nicht analytisch handhabbar. Da diese Funktionen stetig differenzierbar und beschränkt sind und von relativ viele Eingansgrößen anhängen, sind neuronale Netze gut geeignet für numerische Näherungen. Mit Hilfe von einfachen neuronalen Netzen können die statistischen Kenngrößen numerisch approximiert werden. Aus einzelnen Teilmodellen kann ein hybrides Modell des gesamten Systems zusammengesetzt werden. Anhand von einigen Beispielen wird die Güte der Modellierung bewertet. / Material flow systems are normally built with a modular structure. The behavoir of similar elements only differs by technical parameters (e.g. geometriy), and by different logistic loads of the elements in the system. In this paper, a new model is being developed for a non-blocking system with non-global control rules. The behavior of a flow of a material flow element is assumed not to depend on the conditions of other elements of the system, but only on stochastic processes of the arrival of transportation units. The rate of utilization of an element, the quantiles of the queue lengths at its inputs, and the dispersion of its output stream are statistic characteristics. They depend only on the type of the element, its technical parameters, the parameters of the input streams, and the local transportation matrix. These functional dependencies are not analytically manageable. But due to their properties, neural nets are well suited for numeric approximations of these statistic functions. The single models can be used to compose a hybrid model of the whole system. A few examples show the quality of the new modeling technique.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:24406 |
Date | 29 September 2004 |
Creators | Markwardt, Ulf |
Contributors | Marquardt, Hans-Georg, Furmans, Kai, Bruns, Rainer |
Publisher | Technische Universität Dresden |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | German |
Detected Language | German |
Type | doc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.002 seconds