Modern technology requires reliable, fast, and cheap networks as a backbone for the data transmission. Among many available solutions, switched Ethernet combined with Time Sensitive Networking (TSN) standard excels because it provides high bandwidth and real-time characteristics by utilizing low-cost hardware. For the industry to acknowledge this technology, extensive performance studies need to be conducted, and this thesis provides one. Concretely, the thesis examines the performance of two amendments IEEE 802.1Qbv and IEEE 802.1Qbu that are recently appended to the TSN standard. The academic community understands the potential of this technology, so several simulation frameworks already exist, but most of them are unstable and undertested. This thesis builds on top of existent frameworks and utilizes the framework developed in OMNeT++. Performance is analyzed through several segregated scenarios and is measured in terms of end-to-end transmission latency and link utilization. Attained results justify the industry interest in this technology and could lead to its greater representation in the future.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:mdh-44085 |
Date | January 2019 |
Creators | Muminovic, Mia, Suljic, Haris |
Publisher | Mälardalens högskola, Inbyggda system, Mälardalens högskola, Inbyggda system |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0015 seconds