Dans la vie de tous les jours, nous assistons à des chorégraphies surprenantes dans les déplacements de foules de piétons. Les mécanismes qui sont à la base de la dynamique des foules humaines restent peu connus. Un des modes d’observation des piétons consiste à réaliser des mesures en conditions réelles (exemple : aéroport, gare, etc.). La trajectoire empruntée, la vitesse et l’accélération sont les données de base pour une telle analyse. C’est dans ce contexte que se placent nos travaux qui combinent étroitement observations en milieu naturel et expérimentations contrôlées. Nous avons proposé un système pour le suivi de plusieurs piétons dans un environnement fermé, à l’aide d’un réseau de télémètres lasers à balayage. Nous avons fait avancer l’état de l’art sur quatre plans.Premièrement, nous avons introduit une méthode de fusion automatique des données, permettant de discriminer les objets statiques (murs, poteaux, etc.) et aussi d’augmenter le taux de détection.Deuxièmement, nous avons proposé une méthode de détection non paramétrique basée sur la modélisation de la marche. L’algorithme estime la position du piéton, que celui-ci soit immobile ou en mouvement.Finalement, notre suivi repose sur la méthode Rao-Blackwell Monte Carlo Association de Données, avec la particularité de suivre un nombre variable de piétons.L’algorithme a été évalué quantitativement par des expériences de comportement social à différents niveaux de densité. Ces expériences ont eu lieu dans une école, près de 300 piétons ont été suivis dont une trentaine simultanément. / In everyday life, we witness surprising choreographies in the movements of crowds of pedestrians. The mechanisms that underlie the dynamics of human crowd dynamics remain poorly understood. One of the ways of observing pedestrians consists in taking measurements in real conditions (e. g. airport, station, etc.). The trajectory, speed and acceleration are the basic data for such an analysis. It is in this context that our work is placed, which closely combines observations in the natural environment with controlled experiments. We proposed a system for tracking multiple pedestrians in a closed environment using a network of scanning laser rangefinders. We have advanced the state of the art on four levels: first, we have introduced an automatic data fusion method to discriminate static objects (walls, poles, etc.) and also to increase the detection rate; second, we have proposed a non-parametric detection method based on walking modeling. The algorithm estimates the position of the pedestrian, whether stationary or moving, and finally, our monitoring is based on the Rao-Blackwell Monte Carlo Association Data Method, with the particularity of tracking a variable number of pedestrians, which was quantitatively evaluated by experiments in social behaviour at different levels of density. These experiments took place in a school, nearly 300 pedestrians were followed, about thirty of them simultaneously.
Identifer | oai:union.ndltd.org:theses.fr/2015ANGE0086 |
Date | 10 September 2015 |
Creators | Adiaviakoye, Ladji |
Contributors | Angers, Bourcerie, Marc |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0021 seconds