Return to search

Strukturální vlastnosti dědičných tříd permutací / Structural properties of hereditary permutation classes

A permutation class C is splittable if it is contained in a merge of its two proper subclasses, and it is 1-amalgamable if given two permutations σ, τ ∈ C, each with a marked element, we can find a permutation π ∈ C containing both σ and τ such that the two marked elements coincide. In this thesis, we study both 1-amalgamability and splittability of permutation classes. It was previously shown that unsplittability implies 1-amalgamability. We prove that unsplittability and 1-amalgamability are not equivalent properties of permutation classes by showing that there is a permutation class that is both splittable and 1-amalgamable. Moreover, we show that there are infinitely many such classes. Our construction is based on the concept of LR-inflations or more generally on hereditary 2-colorings, which we both introduce here and which may be of independent interest. 1

Identiferoai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:365178
Date January 2017
CreatorsOpler, Michal
ContributorsJelínek, Vít, Valtr, Pavel
Source SetsCzech ETDs
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/masterThesis
Rightsinfo:eu-repo/semantics/restrictedAccess

Page generated in 0.0027 seconds