Existing pedestrian navigation systems are mainly visual-based, sometimes with an addition of audio guidance. However, previous research has reported that visual-based navigation systems require a high level of cognitive efforts, contributing to errors and delays. Furthermore, in many situations a person’s visual and auditory channels may be compromised due to environmental factors or may be occupied by other important tasks. Some research has suggested that the tactile sense can effectively be used for interfaces to support navigation tasks. However, many fundamental design and usability issues with pedestrian tactile navigation displays are yet to be investigated. This dissertation investigates human-computer interaction aspects associated with the design of tactile pedestrian navigation systems. More specifically, it addresses the following questions: What may be appropriate forms of wearable devices? What types of spatial information should such systems provide to pedestrians? How do people use spatial information for different navigation purposes? How can we effectively represent such information via tactile stimuli? And how do tactile navigation systems perform? A series of empirical studies was carried out to (1) investigate the effects of tactile signal properties and manipulation on the human perception of spatial data, (2) find out the effective form of wearable displays for navigation tasks, and (3) explore a number of potential tactile representation techniques for spatial data, specifically representing directions and landmarks. Questionnaires and interviews were used to gather information on the use of landmarks amongst people navigating urban environments for different purposes. Analysis of the results of these studies provided implications for the design of tactile pedestrian navigation systems, which we incorporated in a prototype. Finally, field trials were carried out to evaluate the design and address usability issues and performance-related benefits and challenges. The thesis develops an understanding of how to represent spatial information via the tactile channel and provides suggestions for the design and implementation of tactile pedestrian navigation systems. In addition, the thesis classifies the use of various types of landmarks for different navigation purposes. These contributions are developed throughout the thesis building upon an integrated series of empirical studies.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:558870 |
Date | January 2012 |
Creators | Srikulwong, Mayuree |
Contributors | O'Neill, Eamonn |
Publisher | University of Bath |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Page generated in 0.0024 seconds