The project explores the domain of tactical sensor systems, focusing on SAAB Gripen’s sensor technologies such as radar, RWR (Radar Warning Receiver), and IRST (InfraRed Search and Track). The study employs structured hypothesis testing and model based diagnostics to examine the effectiveness of identifying and isolating deviations within these systems. The central question addressed is whether structured hypothesis testing reliably detects and isolates anomalies in a tactical sensor system. The research employs a framework involving sensor modeling of radar, RWR, and IRST, alongside a sensor fusion model, applied on a linear target tracking model as well as a real target flight track obtained from SAAB Test Flight and Verification. Test quantities are derived from the modeled data, and synthetic faults are intentionally introduced into the system. These test quantities are then compared to predefined thresholds, thereby facilitating structured hypothesis testing. The robustness and reliability of the diagnostics model are established through a series of simulations. Multiple scenarios with varied fault introductions across different sensor measurements are examined. Key results include the successful creation of a tactical sensor model and sensor fusion environment, showcasing the ability to introduce and detect faults. The thesis provides arguments supporting the advantages of model based diagnosis through structured hypothesis testing for assessing sensor fusion data. The results of this research are applicable beyond this specific context, facilitating improved sensor data analysis across diverse tracking scenarios, including applications beyond SAAB Gripen. As sensor technologies continue to evolve, the insights gained from this thesis could offer guidance for refining sensor models and hypothesis testing techniques, ultimately enhancing the efficiency and accuracy of sensor data analysis in various domains. / Denna rapport undersöker området inom taktiska sensorsystem och fokuserar på SAAB Gripens sensorteknik, såsom radar, RWR (Radar Warning Receiver) och IRST (InfraRed Search- and Track). Studien använder strukturerad hypotesprövning och modellbaserad diagnostik för att undersöka effektiviteten av att identifiera och isolera avvikelser inom dessa system. Den centrala frågan som behandlas är om strukturerad hypotesprövning tillförlitligt upptäcker och isolerar avvikelser i ett taktiskt sensorsystem. För att tackla denna utmaning används sensormodellering av radar, RWR och IRST, tillsammans med en sensorfusionsmodell som appliceras på en linjär målspårningsmodell samt verklig målflygbana erhållen från SAAB. Testkvantiteter härleds från den resulterande datan, och syntetiska fel introduceras avsiktligt i systemet. Dessa testskvantiteter jämförs sedan med fördefinierade trösklar vilket lägger grunden för strukturerad hypotesprövning. Tillförlitligheten och pålitligheten hos diagnostikmodellen etableras genom en serie av simuleringar bestående av flera scenarier med varierade felintroduktioner över olika sensorinmätningar. Huvudresultat inkluderar skapandet av en taktisk sensormodell och en sensorfusionsmiljö, som visar förmågan att introducera och upptäcka fel på ett effektivt sätt. Avhandlingen ger argument som stödjer fördelarna med modellbaserad diagnostik genom strukturerad hypotestestning för bedömning av sensorfusionsdata. Resultaten av denna forskning är tillämpliga utanför detta specifika sammanhang, vilket underlättar förbättrad sensordataanalys över olika spårningsscenarier, inklusive applikationer bortom SAAB Gripen. I takt med att sensorteknologier fortsätter att utvecklas kan insikterna från denna avhandling ge vägledning för att förbättra sensormodeller och hypotestestningstekniker, vilket i slutändan förbättrar effektiviteten och noggrannheten för sensordataanalys inom olika områden.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-344449 |
Date | January 2023 |
Creators | Ohlson, Fredrik |
Publisher | KTH, Skolan för elektroteknik och datavetenskap (EECS) |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | Swedish |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | TRITA-EECS-EX ; 2023:949 |
Page generated in 0.0127 seconds