Detta examensarbete utfördes vid Bodens Energi Nät AB under våren 2017 och behandlar mätmetoder och olika tester som kan utföras på markförlagd kabel för kontroll av tillståndet på exempelvis isolation, mantel och skarvar. Bakgrunden till arbetet är att man inom Bodens Energi Nät har ett flertal kilometer kabel på mellanspänningsnivå 20 kV. En stor del av kablarna är isolerade med tvärbunden polyeten, PEX och härstammar från 1970 och 1980-talet. Dessa kablar har i efterhand visat sig ha problem med vattenträd, vilket kan beskrivas som trädliknande strukturer som uppstår i en kabels isolation på grund av fukt och orenheter när dessa blir utsatta för kraftigare elektriska fält. Problem med vattenträd i kablar leder efter en tid, ofrånkomligen till genomslag i isolationen med påföljande jordfel. Syftet med denna rapport är att undersöka och kartlägga olika tillståndsbedömningsmetoder för kraftkabel avsedd för 12/24 kV-nät. Rapporten avser att vara en metodbeskrivning för de vanligaste diagnostiska mätmetoder samt redogör för dess för- och nackdelar. Följande frågeställningar ämnas besvaras: Vilka metoder finns tillgängliga för tillståndsbedömning av mellanspänningskabel och vilka egenskaper är mätbara? Vad har respektive mätmetod för svagheter och styrkor samt vilka begränsningar finns det? Finns det möjlighet att utföra mätningar på en kabel i drift eller måste den tilltänkta kabelsträckan frånskiljas den övriga anläggningen?Om mätningar kan utföras på en kabel i drift, vilka metoder gäller detta? Rapporten bygger till största del på en litteraturstudie där mycket av informationen är hämtad ifrån standarder, handböcker och guider. Rapporten behandlar dels allmän information om kraftkablar samt PEX-kabelns konstruktion vilket bör kännas till för att kunna tillgodogöra sig informationen på bästa sätt. Vidare avhandlas åldringsmekanismer för PEX-isolerad kabel. Metoderna som presenteras i rapporten omfattar bland annat; mantelprovning, hållprov med olika typer av spänning, mätning av den dielektriska förlustfaktorn tan delta samt mätning av partiella urladdningar, PD. I kapitel 5 presenteras mätresultat från ett antal olika tan delta-mätningar samt en mätning av partiella urladdningar, vidare ges en kortare förklaring till mätresultaten. Vid mätning av de dielektriska förlusterna fås information om isolationens totala skick. Mätning av partiella urladdningar (även kallat glimning) ger information om var eventuella ojämnheter och håligheter finns. Det är dock viktigt att komma ihåg att de metoder som finns måste anpassas till den kabel som avses mätas eftersom det inte går att identifiera alla typer av defekter och fel med hjälp av endast en metod. Metoderna bör användas som diagnostiska hjälpmedel som i sin tur ger fingervisningar om kabelanläggningens totala tillstånd. De är därmed inte att betrakta som en definitiv bekräftelse avseende funktionsdugligheten för kabeln. / The work in this bachelor’s thesis was conducted at Bodens Energi Nät AB during the spring of 2017. The report describes common methods available for testing and diagnostic measurements of electric power cables. Bodens Energi Nät manages a medium voltage power grid which consists of around 700 kilometers of power lines and about 200 kilometers of cables. A large part of these cables have an insulating layer consisting of cross-linked polyethylene (XLPE) and originates from the 1970s and the 1980s. These particular XLPE cables have a higher than normal tendency to develop problems with water trees. Water trees can be described as tree-shaped structures forming inside the insulating layer of the cable in the presence of an electrical field and water. Issues with water trees leads to local degradation of the dielectric material in the cable and usually ends with a phase-to-ground fault. The purpose of this thesis is to examine and describe different methods for diagnostic measurements of medium voltage cables. Through the use of a literature study the following questions will be answered: Which methods are available for diagnostic measurements and what properties can be measured? What are the strengths and weaknesses for each of these methods? Can measurements be performed on cables on-line or is it required to disconnect the cables from the grid before any measurements can be performed?In the case of on-line testing, which methods does this apply to? The overall disposition of this thesis starts with a general description of power cables including XLPE cables, as well as aging mechanisms in extruded cables. Subsequent chapters describes testing methods such as cable sheath testing, hipot testing using different types of voltages, measurements of the dielectric dissipation factor tan , as well as partial discharge testing. Chapter 5 discloses the results from some different tan measurements including a partial discharge measurement. A short description and explanation is included with every figure. Measuring the dielectric dissipation factor yields information about the total condition of the insulation. Partial discharge offers information regarding the location of irregularities, cavities and impurities within the insulation. It is important to have in mind that each of these methods on its own will not be able to identify all types of defects. Therefore it may be required to carry out several measurements using different types of methods in order to get a general idea of the condition of the cable. Methods for cable diagnostic measurements should be seen as a tool to get an estimate about the total condition of a power cable and is not considered a fail safe way to determine the operational ability.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:ltu-64574 |
Date | January 2017 |
Creators | Isaksson, Henrik |
Publisher | Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik |
Source Sets | DiVA Archive at Upsalla University |
Language | Swedish |
Detected Language | Swedish |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0022 seconds