Return to search

Chemical circuitry in the visual system of the fruitfly, Drosophila melanogaster

Signal processing in the visual system is mediated by classic neurotransmission and neuropeptidergic modulatory pathways. In Dipteran insects, especially in the fruitfly Drosophila melanogaster, the morphology of the visual system is very well described. However neurotransmitter and neuropeptidergic circuits within the optic lobe neuropil are only partially known. Using several transgenic fly lines and antibodies we determined the localization of the classical neurotransmitters GABA, acetylcholine and glutamate in the visual system, and their putative targets via detecting several neurotransmitter receptors. We paid particular attention to the peripheral neuropil layer called the lamina, where the light signals are filtered, channeled and amplified (Paper I). We discovered four new types of efferent tangential neurons branching distally to the lamina. Among them was the first neuropeptidergic neuron (LMIo) in this region of Drosophila. The LMIo expresses myoinhibitory peptide (MIP) and has its cell body located close to the main lateral clock neurons that express the neuropeptide pigment-dispersing factor (PDF)(Paper II). Since in other Dipteran species PDF is expressed in processes distally to the lamina, we performed comparative anatomical studies of the MIP, PDF, Ion Transport Peptide (ITP) and serotonin (5-HT) distribution in the visual system of the flies Drosophila and Calliphora. Our data suggest that PDF signaling distal to the lamina of the blowfly might be replaced by MIP signaling in the fruitfly, while ITP and 5-HT expression is conserved in the two species (Paper III). Serotonin is crucial in light adaptation during the daily light-dark cycles. We analyzed putative serotonergic circuits in the lamina. We found that LMIo neurons express the inhibitory receptor 5-HT1A, while 5-HT1B and 5-HT2 are both expressed in the epithelial glia of the lamina. Another novel wide-field neuron with lamina branches expresses the excitatory serotonin receptor 5-HT7. Our studies have identified a fairly complex neuronal circuitry in the tangential plexus above the lamina. (Paper IV). Finally we tested circadian locomotor activity rhythms in flies with the GABAB receptor knocked down on the lateral PDF-expressing clock neurons. We observed significant changes in the activity periods and diminished strength of rhythmicity during DD suggesting a modulatory role of GABA in clock function (Paper V). / At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 4: Manuscript. Paper 5: Manuscript.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:su-60160
Date January 2011
CreatorsKolodziejczyk, Agata
PublisherStockholms universitet, Zoologiska institutionen, Stockholm : Department of Zoology, Stockholm University
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeDoctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0019 seconds