Further understanding of dislocation-GB interactions is critical to increasing the performance of polycrystalline metals. The research contained within this dissertation aims to further dislocation-GB interaction understanding through three research studies. First, the effect of noise in EBSPs on GND calculations was evaluated in order to improve dislocation characterization via HR-EBSD. Second, the evolution of GNDs and their effects on back stress was studied through experimental and computational methods applied to tantalum oligo specimens. Third, statistical analysis was used to evaluate grain parameters and current GB transmission parameters on their correlation with dislocation accumulation.
Identifer | oai:union.ndltd.org:BGMYU2/oai:scholarsarchive.byu.edu:etd-8536 |
Date | 01 August 2019 |
Creators | Hansen, Landon Thomas |
Publisher | BYU ScholarsArchive |
Source Sets | Brigham Young University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Theses and Dissertations |
Rights | http://lib.byu.edu/about/copyright/ |
Page generated in 0.0017 seconds