Return to search

Feature-based exploitation of multidimensional radar signatures

An important problem in electromagnetics is that of extracting, interpreting, and exploiting scattering mechanisms from the scattered field of a target. Termed “features”, these physics-based descriptions of scattering phenomenology have many and diverse applications such as target identification, classification, validation, and imaging. In this dissertation, the feature extraction, analysis, and exploitation of both synthetic and measured multidimensional radar signatures are investigated. Feature extraction is first performed on simulated data of the highfrequency electromagnetics solver Xpatch. The scattered, far-field of an electrically large target is well-approximated by a discrete set of points known as scattering centers. Xpatch yields three-dimensional (3D) scattering centers of a target one aspect angle at a time by using the shooting and bouncing ray technique and a computer-aided design (CAD) model of the target. The feature extraction technique groups scattering centers across multiple angles that pertain to the same scattering mechanism. Using a nearest neighbor clustering algorithm, this association is carried-out in a multidimensional grid of scattering center angle, bounce, and spatial location, wherein distinct scattering mechanisms are assumed to be non-overlapping. Synthetic monostatic and bistatic feature sets are extracted and analyzed using this algorithm. Additionally, feature sets are exploited to assist humans in electromagnetic CAD model validation. The generation of target CAD models is a challenging, resource-limited, and human-experience-based process. Target features extracted from a CAD model in question are compared individually to measured data from the physical target by projection of their radar signatures. CAD model disagreements such as missing, added, or dimensionally inaccurate components, as well as measurement imperfections are analyzed. Target traceback information of the features identifies flawed areas of the model. The projection value quantifies the degree of disagreement. The feature extraction methodology is next modified for measured radar signatures which lack readily available scattering center and bounce information. First, many ground plane synthetic aperture radar images of overlapping, limited apertures in azimuth are formed from the measurement data. Then, two-dimensional scattering centers of all images are estimated using a modified CLEAN algorithm. Feature extraction is lastly performed as with Xpatch data, though a reduction in grid dimensionality and orthogonality occurs. Finally, measured feature sets are exploited for sparse elevation 3D imaging and improved CAD model validation. The first application estimates the truth 3D scattering center of each feature using linear least squares to then visualize a composite 3D image of the target. The second application projects both synthetic and measured feature radar signatures to mitigate errors from the intersection of features in the combined measurement signature. / text

Identiferoai:union.ndltd.org:UTEXAS/oai:repositories.lib.utexas.edu:2152/17725
Date31 August 2012
CreatorsRaynal, Ann Marie
Source SetsUniversity of Texas
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatelectronic
RightsCopyright is held by the author. Presentation of this material on the Libraries' web site by University Libraries, The University of Texas at Austin was made possible under a limited license grant from the author who has retained all copyrights in the works.

Page generated in 0.0021 seconds