This thesis presents an extension to the Temporal Fast Downward planning system that integrates motion planning in it and algorithms for generating two types of temporal macro operators expressible in PDDL2.1. The extension to the Temporal Fast Downward planning system includes, in addition to the integration of motion planning itself, an extension to the context-enhanced additive heuristic that uses information from the motion planning part to improve the heuristic estimate. The temporal macro operators expressible in PDDL2.1 are, to the author's knowledge, an area that is not studied within the context of plan repair before. Two types of temporal macro operators are presented along with algorithms for automatically constructing and using them when solving plan repair problems by replanning. Both the heuristic extension and the temporal macro operators were evaluated in the context of simulated unmanned aerial vehicles autonomously executing reconnaissance missions to identify targets and avoiding threats in unexplored areas. The heuristic extension was proved to be very helpful in the scenario. Unfortunately, the evaluation of the temporal macro operators indicated that the cost of introducing them is higher than the gain of using them for the scenario.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-152722 |
Date | January 2018 |
Creators | Hansson, Erik |
Publisher | Linköpings universitet, Artificiell intelligens och integrerade datorsystem |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0018 seconds